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The problem of gauging matter fields with a Poincar6 invariant action functional 
that admits an r parameter, semisimple group G(r) of internal symmetries is 
considered. A minimal replacement operator for the total group Plo x G(r) is 
obtained, together with the requisite compensating 1-forms for both the Poincar6 
and the G(r) sectors. A basis for P~o x G(r)-invariant Lagrangian densities for 
the free fields is obtained. Restriction to Lagrangian densities that are at most 
quadratic in the associated curvature and torsion fields eliminates active coupling 
between the Plo free field Lagrangian and the G(r) free field Lagrangian, although 
there is passive coupling that arises through the requirement of tensorial covari- 
ance under general coordinate transformations generated by the local action of 
the translation group. A superposition principle, modulo passive coupling, thus 
holds for quadratic free field Lagrangian for the total group: Lro T = Lp + L~(r). 
Field equations for the matter fields and the compensating fields of  the G(r) 
sector are obtained. Both share the passive coupling to /'1o that is required in 
order to achieve "tensorial" covariance, but only the matter fields couple directly 
to the Poincar6 fields and only to the Lorentz sector. For "weak" Poincar6 fields, 
the field equations for the matter fields and the compensating fields of the internal 
symmetries go over into the standard field equations of gauge theory for an 
internal symmetry group. 

1. I N T R O D U C T I O N  

A direct gauge theory for the Poincar~ group was obtained in I (Edelen, 
1985a) by realization of  the Poincar~ group as a matrix Lie group of  
automorphisms of  an affine plane in Vs. The minimal replacement operator 
for the local action of  the Poincar~ group was obtained by the standard 
Yang-Mil ls  construct. Its application to the standard frame bundle of  
Minkowski space gave the distortion 1-forms that constitute a frame bundle 
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for a space U4 with both curvature and affine Cartan torsion. The standard 
minimal coupling construct was then shown to lead to a system of field 
equations for the matter fields and the compensating 1-forms for the local 
action of P10, in which the orbital and spin contributions of  the gauge 
momentum energy of the matter fields were decoupled. 

Further studies reported in II  (Edelen, 1985b) analyzed the implications 
of P10 invariance of the total Lagrangian density. This led to explicit 
calculations of  a basis for Plo invariants and to the construction of the 
general form of the "free field" Lagrangian density for the Poincar6 group. 
As a consequence, it was shown that Plo invariance implied that there were 
no self-sources in the spin equations (field equations for the compensating 
fields for the Lorentz sector), and that the space U4 could be attached to 
the underlying Minkowski space at a specified center in such a way that 
the frame bundles, the coframe bundles, and the metric structures could 
also be attached in a natural way. This attachment process was achieved 
through implementing a system of antiexact gauge conditions and may thus 
be applied without loss of  generality. 

The fundamental  question is not that of  gauging the Poincar6 group, 
however. We know that the presence of groups of internal symmetries G(r) 
leads, via the gauge construct, to correct descriptions of  elementary matter 
with strong, weak, and electromagnetic interactions (Salem, 1968; Weinberg, 
1974; Marciano and Pagels, 1978). Since these theories are constructed in 
an underlying Minkowski space, they are manifestly Poincar~ covariant. 
The Poincar6 group is thus an external symmetry group for the matter fields 
as well as the "free field" Lagrangian density for the compensating fields 
of  the internal symmetry group. It thus follows that the inclusion of gravita- 
tional interactions through the local action of the Poincar6 group necessitates 
the construction of a gauge theory for the simultaneous local action of both 
the internal symmetry group and the external symmetry group. 

The fact that the Poincar6 group is a symmetry group for both the 
matter fields and the local action of the internal symmetry group indicates 
that there are two distinct possible modes of approach.  The first alternative 
would be to apply the Poincar6 gauge theory starting with the Lagrangian 
density of  the gauge theory for the matter fields and the internal symmetry 
group. This can be done quite easily by simply replacing the Lagrangian 
for the matter fields in I and I I  by the minimal coupling Lagrangian for 
the matter fields and the local action of the internal symmetry group. The 
minimal replacement operation for the Poincar6 group would then be 
applied to the compensating 1-forms for the internal symmetry grouP as 
well to the matter fields themselves. 

The second alternative is to construct a gauge theory for the total 
symmetry group PloXG(r), in which case the minimal replacement 
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operation for the total group is applied to the matter fields alone. Now, 
gauge theory usually starts with the Lagrangian density for the matter fields 
alone and then proceeds by minimal replacement and minimal coupling 
constructs to the correct gauge-theoretic field equations. The operable gauge 
group is discovered, so to speak, by finding the total group of symmetries 
of the matter Lagrangian density. From this point of view, Plo • G(r) is the 
total symmetry group for the theory (the group of Noetherian symmetries 
of the action functional). It would thus appear that the second alternative 
should prove to be the correct approach. This surmise is directly reinforced 
by the results established in (Edelen, 1984) where the problem of construct- 
ing a gauge theory for a Noetherian symmetry group that acts indis- 
criminantly on both the matter fields and the base manifold is examined. 
It is also substantiated by the fact that application of the minimal replace- 
ment operator for the Poincar6 group to the compensating fields for the 
internal symmetry group, as would be required in the first alternative, would 
~ead to spin currents that are not G(r) invariant. We therefore restrict our 
attention in this paper to the problem of gauging the group P~o • G(r) as 
a total symmetry group for the matter fields. 

2. THE TOTAL SYMMETRY GROUP OF THE MATTER FIELDS 

The situation of interest is where the Lagrangian 4-form 
L(x i, ~A, oi~A)l~ of the matter fields is jointly invariant under the global 
action of the Poincar~ group, P~o, and a semisimple r-parameter group of 
internal symmetries, G(r). The total symmetry group of the matter fields is 
thus the direct product group P~0 • G(r). We therefore have the problem 
of constructing a gauge theory for the local action of the total group 
Plo • G( r ). 

Let A denote the restriction of any group-related quantity to a 
sufficiently small neighborhood of the identity that second- and higher-order 
terms in A quantities may be neglected. We then have 

A G ( r ) : X I 2 " A - > x I t A + A u b f A E x I t E ,  l<-b<-r (1) 

A P I o :  XI.rA._> xItA a A E +Au M ~ ,  l - a - < 6  (2) 

Here, the f ' s  constitute a basis for the Lie algebra of G(r), 

f a f b  -- fbfa = k~bfc (3) 

and the M's  constitute a basis for the Lie algebra of the Lorentz sector, 
L(4, R), of Plo, 

M~M~ -M~M~ = C~M~, (4) 
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where the matter fields constitute the representation space. The reader 
should note that the translation sector, T(4), of P~o does not make a 
contribution in (2) because the matter fields are assumed to transform under 
the adjoint representation of  P~0 and thus respond only to the Lorentz sector. 

The total group is the direct product of/ '1o and G ( r ) ,  and hence the 
action of the infinitesimal transformations of  the total group gives 

A(P~o • G ( r ) ) :  al2 "A ~ ltIA-~- ( A u " M A ~  + A u V f ~ e ) ~  ~. (5) 

The results givn in (5) provide explicit evaluations of the deformations (Lie 
derivatives) of the matter fields that result from the action of Pao x G ( r )  on 
the space with local coordinates {~AII--< A-< N}. It thus provides direct 
access to the gauge theory of the total g roup .  

3. MINIMAL REPLACEMENT 

We now allow the total group, Plo x G ( r ) ,  to act locally. Under these 
circumstances, we may apply the results established in (Edelen, 1984). The 
direct product  structure of the total group allows certain specific sim- 
plifications, however. In particular, we may superimpose the individual 
constructs for Plo and G ( r ) .  To this end, it is useful to recall the results 
established in I and II for local action of  P~o: 

W ~ = W~{ dx  i = compensating 1 -forms for L(4, R) (6) 

~ i = ~ i k dx  k = compensating 1-forms for T(4) (7) 

B '  = B~ dx  k = dx  ~ + W l ~ x '  + ~ ' = ~ ( d x  ~) 

= distortion 1-forms for local action of  P~o on the (8) 
underlying Minkowski space M4 (coframe basis for U4), 

bi = b~ Ok = frame basis for U4 (9) 

b~ J B ~ = ~ ,  bkB~k = 34, det(B~) = B # 0 (10) 

0 n = d W  ~ + C t j ~ W  ~ ^ W v / 2  = L(4, R) curvature 2-forms (11) 

12 ~ = d $ i +  W~l~k  A ~b k = T(4) curvature 2-forms (12) 

X ~ = ~ t i+  O~l~kX ~ = affine Cartan torsion 2-forms (13) 

Here, the l's are a basis for the action of the Lie algebra of L(4, R) on the 
underlying Minkowski space. 

The local action of  the total group necessitates compensating 1-forms 
for the G ( r )  sector. We therefore introduce 

A b=  A b dx  k =  compensating 1-forms for G ( r )  (14) 
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which give rise to 

~b = dA b + kabcAa ̂  AC/2 = G(r)-curvature 2-forms (15) 

Let Jg denote the minimal replacement operator. The results established 
in (Edelen, 1984) and simplified in I show that 

yA = ~ ( O i ~ x t A )  : bki{OkXi~Aq_ (A~f2E + W ~ M ~ ) ~  E } (16) 

JI( LIz ) = L( x i, q~A, ya) Blx (17) 

Minimal replacement is thus well defined for the local action of the total 
group P10 x G(r). 

There has been some confusion in the literature over whether minimal 
replacement for Plo should or should not be applied to the compensating 
fields for the internal symmetry group (to Yang-Mills potentials and /or  
4-vector potentials of the electromagnetic field). Hehl et al. (1976) conclude 
that it should not, on the basis that it would lead to spin current 3-forms 
that break the internal symmetry group. This is the correct answer in view 
of (16), provided the multiplicative b correction is included. This correction 
arises from the fact that da.I ta  is not covariant under Poincar6 transforma- 
tions applied to M4, while bi -J OXI rA is a T(4) scalar and hence covariant 
under Poincar6 transformations applied to M4. Thus, minimal replacement 
does not lead to the transition 

A b d x  k __> A b D x  k b k = A k B  j d x  j 

but rather to 

k b Abi ~ bi Ak 

in the construction of the minimal replacement for oi~A; that is, 

A~ dx ~= (b~Abk)B ~ 

which is simply the resolution of the A fields on the coframe basis of U4. 

4. MINIMAL COUPLING 

The minimal coupling construct of Yang-Mills theory requires us to 
augment the minimally replaced Lagrangian 4-form of the matter fields by 
a "free field" Lagrangian 4-form that is invariant under the local action of 
the total group PloXG(r).  In view of the direct product structure of the 
total group, the analysis given in Section 5 of II shows that the total 
Lagrangian density is given by LB +l iB,  where 

11 = II(B~, 0F, ~:~, ~) (18) 



1 1 3 8  Edelen 

is now a Plo • G(r)- invariant  scalar. The various possible dependencies of 
II on the B's, O's, and E's has been given in II. We therefore have the 
problem of  constructing Plo • G(r)- invariant  scalars from the B's and the 
G(r)-curvature  quantities. 

When Plo acts locally, the translation sector~ T(4), generates all smooth 
coordinate transformations. Noting that the b's form a frame basis, it follows 
that 

O~ = bi J bj .J ~b = h,~h.ab vi vj v,m (19) 

are T(4)-invariant scalars. On the other hand, the b's considered as the 
entries of a row matrix b, transform under the local action of/~ by 'b = bL -1. 
This shows that there are no Plo-invariant scalars that are linear in the 
G(r)-curvature  quantities. Noting that 

- 1  - - l  
i mn  j Lmh L , = h  ~ 

where the h's are the components of the inverse of the metric tensor on the 
underlying Minkowski space, we have the quadratic Plo-invariants 

^ . . A ~ b  ~ ~k~dm,~c 
t~ i j l t  r~ V k m  

However, (see II-15) 

b~hm,b~ = gO 

and hence the quadratic Plo invariants assume the simpler form 
~ b  i k i m ~ c  og V Vkm,  l<--b,c<--r 

It now remains to secure G(r)  invariance. This, however, is an easy 
matter since we are in the standard Yang-Mills case with a semisimple 
internal symmetry group. Thus, if kbc are the components of the Cartan- 
Killing metric on G(r),  we have the quadratic Plo x G(r)- invariant  "free 
field" Lagrangian 

" b  i k  "m " c  I I o =  KOog ~ Okmkbc (20) 

where K is a coupling constant. 
This Lagrangian is exactly what we would get for a semisimple internal 

symmetry group on Minkowski space, 

o b h i k h J m O r  k ij krn bc 

provided we replace h ~ by gO. Thus, the only effect of the factor group Plo 
is this replacement, and the accompanying multiplication by B = (_g)l/2 
when the corresponding Lagrangian density is constructed. In particular, 
Plo minimal replacement does not apply to the G(r) compensating fields 
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and their derivatives. Further, and of greater importance, invariance theory 
shows that coupling between the curvature and torsion forms of Plo and 
the curvature forms of G(r) can only occur at cubic and higher order 
invariants. A restriction to Lagrangians that are at most quadratic in group 
curvature expressions, as is the usual case, precludes such couplings. Thus, 
if we use I Ip  to denote the quadratic Lagrangian for Pao that was obtained 
in Section 5 of  II, the quadratic "free field" Lagrangian density for the total 
group Plo x G(r) is given by 

FIB = (lip + FIc)B (21) 

and we have the superposition principle FI = He + I I o  

5. FIELD E Q U A T I O N S  

The field equations for the Plo compensating fields will be the same 
as those reported in I and I I  with the Lagrangian FI replaced by FIp+FI~ 
in accordance with (21). It is therefore unnecessary to restate them here. 

For the matter fields, we introduce the constitutive relations 

L~A = OL/Oy A, t A = (OL/o*A)Iy (22) 

Variation of the total Lagrangian, (L + II)B, with respect to the matter fields 
gives the following Euler-Lagrange field equations for the matter fields: 

j i a E b E j i Oj{BbiLA} - ( Wj M~A+ Aj f bA){Bb,L~} = BLA (23) 

I f  the Poincar6 group were restricted so that it acted only globally, the 
W's would vanish, B = 1, and b would be the identity matrix. In the event, 
(23) reduce to 

OjL - AbX~AL~ = LA 

which are the standard results for an internal symmetry group with com- 
pensating 1-forms A b. I f  local action of / '1o  is then "switched on",  so to 
speak, we have the two transitions 

LiA ~ BbJL~A, Abf~A -> A~f~A+ W;M~A (24) 

The first of  these is passive transition that accommodates  the transition 
from Minkowski space to the space U4 that obtains as a consequence of 
minimal replacement for the Poincar6 group. The second is an active 
transition whereby "parallel ism" corrections obtain as a consequence of 
the local action of  the Lorentz group on the frame and coframe bundles of  
U4. We take particular note of the absence of "paral lel ism" corrections 
associated with the translation group, T(4), although there are passive 
contributions from the translation compensating fields in both B and the 
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b's. This is not altogether an unexpected situation. The G(r)  and the L(4, R) 
sectors are faithfully represented on the matter fields, as shown by (5), 
while the T(4) sector is not. It is thus reasonable that the G(r )  and the 
L(4, R) sectors give rise to direct, active contributions while the T(4) sector 
is only passively involved in securing "tensorial" properties under the 
general coordinate transformations that are generated by the local action 
of T(4). 

Although it should not be heeded too strongly, the absence of active 
contributions to the matter field equations from the T(4) compensating 
fields can be taken as further evidence of the reasonableness of imposing 
the weak constraints of vanishing affine Cartan torsion that were studied 
in Section 7 of II. Further, we have 

and 

so that 

" / /~(dS2)  = dS2 = go dxi dxj = B k h k ' B "  

D,/~,( dx i) = D B  i .~ ]~i 

D(  dS 2) = 2~,khkm B m 

Thus, the weak constraint of  vanishing affine Cartan torsion is consistent 
with metric compatibility demanded by first-order agreement with the 
Einstein theory. 

The field equations for the G(r)  compensating fields are most easily 
handled by introducing the constitutive relations 

Variation of the total Lagrangian with respect to the G(r)  compensating 
fields gives the Euler-Lagrange equations 

20:Cr~-2Aj  ka c ~ i =  BbmLafbEXi m A ~ (26) 

The left-hand sides of these equations are exactly the same as those that 
obtain in the standard Yang-Mills gauge theory for an internal semisimple 
symmetry group. The corresponding terms on the right-hand side, are also 
recognized as standard after the transition (24) is made. Thus, the only 
changes in the field equations for the G(r )  compensating fields due to the 
presence of  the Poincar6 group are the passive ones that render the field 
equations "tensorial" under the general coordinate transformations gener- 
ated by the local action of the translation subgroup. These observations, 
together with the results established in Section 4, show that the field 
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equat ions  for the G( r )  compensa t ing  fields in the presence of local Poincar6 
t ransformat ions  can be writ ten down immedia te ly  from knowledge of the 

cor responding  field equat ions  in the absence of local Poincar6 t ransforma-  
tions. 
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